fractal20220817_data (87212 trajs, 111.07 GiB)

natural_language_instruction image (256, 320, 3)
place green can upright
pick apple from white bowl
move blue chip bag near water bottle
    tfds.core.DatasetInfo(
    name='fractal20220817_data',
    full_name='fractal20220817_data/0.1.0',
    description="""
    Table-top manipulation with 17 objects
    """,
    homepage='https://ai.googleblog.com/2022/12/rt-1-robotics-transformer-for-real.html',
    data_path='gs://gresearch/robotics/fractal20220817_data/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=111.07 GiB,
    features=FeaturesDict({
        'aspects': FeaturesDict({
            'already_success': bool,
            'feasible': bool,
            'has_aspects': bool,
            'success': bool,
            'undesirable': bool,
        }),
        'attributes': FeaturesDict({
            'collection_mode': int64,
            'collection_mode_name': string,
            'data_type': int64,
            'data_type_name': string,
            'env': int64,
            'env_name': string,
            'location': int64,
            'location_name': string,
            'objects_family': int64,
            'objects_family_name': string,
            'task_family': int64,
            'task_family_name': string,
        }),
        'steps': Dataset({
            'action': FeaturesDict({
                'base_displacement_vector': Tensor(shape=(2,), dtype=float32),
                'base_displacement_vertical_rotation': Tensor(shape=(1,), dtype=float32),
                'gripper_closedness_action': Tensor(shape=(1,), dtype=float32),
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': Tensor(shape=(3,), dtype=int32),
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'base_pose_tool_reached': Tensor(shape=(7,), dtype=float32),
                'gripper_closed': Tensor(shape=(1,), dtype=float32),
                'gripper_closedness_commanded': Tensor(shape=(1,), dtype=float32),
                'height_to_bottom': Tensor(shape=(1,), dtype=float32),
                'image': Image(shape=(256, 320, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'orientation_box': Tensor(shape=(2, 3), dtype=float32),
                'orientation_start': Tensor(shape=(4,), dtype=float32),
                'robot_orientation_positions_box': Tensor(shape=(3, 3), dtype=float32),
                'rotation_delta_to_go': Tensor(shape=(3,), dtype=float32),
                'src_rotation': Tensor(shape=(4,), dtype=float32),
                'vector_to_go': Tensor(shape=(3,), dtype=float32),
                'workspace_bounds': Tensor(shape=(3, 3), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{brohan2022rt,
      title={Rt-1: Robotics transformer for real-world control at scale},
      author={Brohan, Anthony and Brown, Noah and Carbajal, Justice and Chebotar, Yevgen and Dabis, Joseph and Finn, Chelsea and Gopalakrishnan, Keerthana and Hausman, Karol and Herzog, Alex and Hsu, Jasmine and others},
      journal={arXiv preprint arXiv:2212.06817},
      year={2022}
    }""",
)
    

kuka (580392 trajs, 778.02 GiB)

natural_language_instruction image (512, 640, 3)
pick anything
pick anything
pick anything
    tfds.core.DatasetInfo(
    name='kuka',
    full_name='kuka/0.1.0',
    description="""
    Bin picking and rearrangement tasks
    """,
    homepage='https://arxiv.org/abs/1806.10293',
    data_path='gs://gresearch/robotics/kuka/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=778.02 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'base_displacement_vector': Tensor(shape=(2,), dtype=float32),
                'base_displacement_vertical_rotation': Tensor(shape=(1,), dtype=float32),
                'gripper_closedness_action': Tensor(shape=(1,), dtype=float32),
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': Tensor(shape=(3,), dtype=int32),
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'clip_function_input/base_pose_tool_reached': Tensor(shape=(7,), dtype=float32),
                'clip_function_input/workspace_bounds': Tensor(shape=(3, 3), dtype=float32),
                'gripper_closed': Tensor(shape=(1,), dtype=float32),
                'height_to_bottom': Tensor(shape=(1,), dtype=float32),
                'image': Image(shape=(512, 640, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'task_id': Tensor(shape=(1,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
        'success': bool,
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{kalashnikov2018qt,
      title={Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation},
      author={Kalashnikov, Dmitry and Irpan, Alex and Pastor, Peter and Ibarz, Julian and Herzog, Alexander and Jang, Eric and Quillen, Deirdre and Holly, Ethan and Kalakrishnan, Mrinal and Vanhoucke, Vincent and others},
      journal={arXiv preprint arXiv:1806.10293},
      year={2018}
    }""",
)
    

bridge (25460 trajs, 387.49 GiB)

natural_language_instruction image (480, 640, 3)
PICK UP THE SPOON AND PUT NEAR THE VESSEL
put fork from basket to tray
Place the red vegetable in the silver pot.
    tfds.core.DatasetInfo(
    name='bridge',
    full_name='bridge/0.1.0',
    description="""
    WidowX interacting with toy kitchens
    """,
    homepage='https://rail-berkeley.github.io/bridgedata/',
    data_path='gs://gresearch/robotics/bridge/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=387.49 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'open_gripper': bool,
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': float32,
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'image': Image(shape=(480, 640, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'state': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@inproceedings{walke2023bridgedata,
        title={BridgeData V2: A Dataset for Robot Learning at Scale},
        author={Walke, Homer and Black, Kevin and Lee, Abraham and Kim, Moo Jin and Du, Max and Zheng, Chongyi and Zhao, Tony and Hansen-Estruch, Philippe and Vuong, Quan and He, Andre and Myers, Vivek and Fang, Kuan and Finn, Chelsea and Levine, Sergey},
        booktitle={Conference on Robot Learning (CoRL)},
        year={2023}
    }""",
)
    

taco_play (3242 trajs, 47.77 GiB)

structured_language_instruction natural_language_instruction rgb_gripper (84, 84, 3) rgb_static (150, 200, 3)
place_yellow_left_cabinet put the yellow object inside the left cabinet
place_pink_box move to the box and place the pink object
rotate_yellow_block_left grasp the yellow block and turn it left
    tfds.core.DatasetInfo(
    name='taco_play',
    full_name='taco_play/0.1.0',
    description="""
    Franka arm interacting with kitchen
    """,
    homepage='https://www.kaggle.com/datasets/oiermees/taco-robot',
    data_path='gs://gresearch/robotics/taco_play/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=47.77 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'actions': Tensor(shape=(7,), dtype=float32),
                'rel_actions_gripper': Tensor(shape=(7,), dtype=float32),
                'rel_actions_world': Tensor(shape=(7,), dtype=float32),
                'terminate_episode': float32,
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'depth_gripper': Tensor(shape=(84, 84), dtype=float32),
                'depth_static': Tensor(shape=(150, 200), dtype=float32),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'rgb_gripper': Image(shape=(84, 84, 3), dtype=uint8),
                'rgb_static': Image(shape=(150, 200, 3), dtype=uint8),
                'robot_obs': Tensor(shape=(15,), dtype=float32),
                'structured_language_instruction': string,
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@inproceedings{rosete2022tacorl,
    author = {Erick Rosete-Beas and Oier Mees and Gabriel Kalweit and Joschka Boedecker and Wolfram Burgard},
    title = {Latent Plans for Task Agnostic Offline Reinforcement Learning},
    journal = {Proceedings of the 6th Conference on Robot Learning (CoRL)},
    year = {2022}
    }
    @inproceedings{mees23hulc2,
    title={Grounding  Language  with  Visual  Affordances  over  Unstructured  Data},
    author={Oier Mees and Jessica Borja-Diaz and Wolfram Burgard},
    booktitle = {Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
    year={2023},
    address = {London, UK}
    }""",
)
    

jaco_play (976 trajs, 9.24 GiB)

natural_language_instruction image (224, 224, 3) image_wrist (224, 224, 3)
pick up the milk dairy
place the black bowl in the oven
pick up the green cup
    tfds.core.DatasetInfo(
    name='jaco_play',
    full_name='jaco_play/0.1.0',
    description="""
    Jaco 2 pick place on table top
    """,
    homepage='https://github.com/clvrai/clvr_jaco_play_dataset',
    data_path='gs://gresearch/robotics/jaco_play/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=9.24 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'gripper_closedness_action': Tensor(shape=(1,), dtype=float32),
                'terminate_episode': Tensor(shape=(3,), dtype=int32),
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'end_effector_cartesian_pos': Tensor(shape=(7,), dtype=float32),
                'end_effector_cartesian_velocity': Tensor(shape=(6,), dtype=float32),
                'image': Image(shape=(224, 224, 3), dtype=uint8),
                'image_wrist': Image(shape=(224, 224, 3), dtype=uint8),
                'joint_pos': Tensor(shape=(8,), dtype=float32),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@software{dass2023jacoplay,
      author = {Dass, Shivin and Yapeter, Jullian and Zhang, Jesse and Zhang, Jiahui
                and Pertsch, Karl and Nikolaidis, Stefanos and Lim, Joseph J.},
      title = {CLVR Jaco Play Dataset},
      url = {https://github.com/clvrai/clvr_jaco_play_dataset},
      version = {1.0.0},
      year = {2023}
    }""",
)
    

berkeley_cable_routing (1482 trajs, 4.67 GiB)

natural_language_instruction wrist45_image (128, 128, 3) image (128, 128, 3) wrist225_image (128, 128, 3) top_image (128, 128, 3)
route cable
route cable
route cable
    tfds.core.DatasetInfo(
    name='berkeley_cable_routing',
    full_name='berkeley_cable_routing/0.1.0',
    description="""
    Routing cable into clamps on table top
    """,
    homepage='https://sites.google.com/view/cablerouting/home',
    data_path='gs://gresearch/robotics/berkeley_cable_routing/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=4.67 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': float32,
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'robot_state': Tensor(shape=(7,), dtype=float32),
                'top_image': Image(shape=(128, 128, 3), dtype=uint8),
                'wrist225_image': Image(shape=(128, 128, 3), dtype=uint8),
                'wrist45_image': Image(shape=(128, 128, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@article{luo2023multistage,
      author    = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},
      title     = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},
      journal   = {arXiv pre-print},
      year      = {2023},
      url       = {https://arxiv.org/abs/2307.08927},
    }""",
)
    

roboturk (1796 trajs, 45.39 GiB)

natural_language_instruction front_rgb (480, 640, 3)
object search
object search
layout laundry
    tfds.core.DatasetInfo(
    name='roboturk',
    full_name='roboturk/0.1.0',
    description="""
    Cloth folding, bowl stacking
    """,
    homepage='https://roboturk.stanford.edu/dataset_real.html',
    data_path='gs://gresearch/robotics/roboturk/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=45.39 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'gripper_closedness_action': Tensor(shape=(1,), dtype=float32),
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': float32,
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'front_rgb': Image(shape=(480, 640, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@inproceedings{mandlekar2019scaling,
              title={Scaling robot supervision to hundreds of hours with roboturk: Robotic manipulation dataset through human reasoning and dexterity},
              author={Mandlekar, Ajay and Booher, Jonathan and Spero, Max and Tung, Albert and Gupta, Anchit and Zhu, Yuke and Garg, Animesh and Savarese, Silvio and Fei-Fei, Li},
              booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
              pages={1048--1055},
              year={2019},
              organization={IEEE}
            }""",
)
    

nyu_door_opening_surprising_effectiveness (435 trajs, 7.12 GiB)

natural_language_instruction image (720, 960, 3)
open door
open door
open door
    tfds.core.DatasetInfo(
    name='nyu_door_opening_surprising_effectiveness',
    full_name='nyu_door_opening_surprising_effectiveness/0.1.0',
    description="""
    Hello robot opening cabinets, microwaves etc
    """,
    homepage='https://jyopari.github.io/VINN/',
    data_path='gs://gresearch/robotics/nyu_door_opening_surprising_effectiveness/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=7.12 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'gripper_closedness_action': Tensor(shape=(1,), dtype=float32),
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': float32,
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'image': Image(shape=(720, 960, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@misc{pari2021surprising,
        title={The Surprising Effectiveness of Representation Learning for Visual Imitation}, 
        author={Jyothish Pari and Nur Muhammad Shafiullah and Sridhar Pandian Arunachalam and Lerrel Pinto},
        year={2021},
        eprint={2112.01511},
        archivePrefix={arXiv},
        primaryClass={cs.RO}
    }""",
)
    

viola (135 trajs, 10.40 GiB)

natural_language_instruction eye_in_hand_rgb (224, 224, 3) agentview_rgb (224, 224, 3)
arrange plate and fork
arrange plate and fork
make coffee
    tfds.core.DatasetInfo(
    name='viola',
    full_name='viola/0.1.0',
    description="""
    Franka robot interacting with stylized kitchen tasks
    """,
    homepage='https://ut-austin-rpl.github.io/VIOLA/',
    data_path='gs://gresearch/robotics/viola/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=10.40 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'gripper_closedness_action': float32,
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': float32,
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'agentview_rgb': Image(shape=(224, 224, 3), dtype=uint8),
                'ee_states': Tensor(shape=(16,), dtype=float32),
                'eye_in_hand_rgb': Image(shape=(224, 224, 3), dtype=uint8),
                'gripper_states': Tensor(shape=(1,), dtype=float32),
                'joint_states': Tensor(shape=(7,), dtype=float32),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@article{zhu2022viola,
      title={VIOLA: Imitation Learning for Vision-Based Manipulation with Object Proposal Priors},
      author={Zhu, Yifeng and Joshi, Abhishek and Stone, Peter and Zhu, Yuke},
      journal={6th Annual Conference on Robot Learning (CoRL)},
      year={2022}
    }""",
)
    

berkeley_autolab_ur5 (896 trajs, 76.39 GiB)

natural_language_instruction image (480, 640, 3) hand_image (480, 640, 3)
pick up the blue cup and put it into the brown cup.
put the ranch bottle into the pot
put the ranch bottle into the pot
    tfds.core.DatasetInfo(
    name='berkeley_autolab_ur5',
    full_name='berkeley_autolab_ur5/0.1.0',
    description="""
    UR5 performing cloth manipulation, pick place etc tasks
    """,
    homepage='https://sites.google.com/view/berkeley-ur5/home',
    data_path='gs://gresearch/robotics/berkeley_autolab_ur5/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=76.39 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'gripper_closedness_action': float32,
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': float32,
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'hand_image': Image(shape=(480, 640, 3), dtype=uint8),
                'image': Image(shape=(480, 640, 3), dtype=uint8),
                'image_with_depth': Image(shape=(480, 640, 1), dtype=float32),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'robot_state': Tensor(shape=(15,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@misc{BerkeleyUR5Website,
      title = {Berkeley {UR5} Demonstration Dataset},
      author = {Lawrence Yunliang Chen and Simeon Adebola and Ken Goldberg},
      howpublished = {https://sites.google.com/view/berkeley-ur5/home},
    }""",
)
    

toto (902 trajs, 127.66 GiB)

natural_language_instruction image (480, 640, 3)
pour
pour
pour
    tfds.core.DatasetInfo(
    name='toto',
    full_name='toto/0.1.0',
    description="""
    Franka scooping and pouring tasks
    """,
    homepage='https://toto-benchmark.org/',
    data_path='gs://gresearch/robotics/toto/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=127.66 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'open_gripper': bool,
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': float32,
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'image': Image(shape=(480, 640, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'state': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@inproceedings{zhou2023train,
      author={Zhou, Gaoyue and Dean, Victoria and Srirama, Mohan Kumar and Rajeswaran, Aravind and Pari, Jyothish and Hatch, Kyle and Jain, Aryan and Yu, Tianhe and Abbeel, Pieter and Pinto, Lerrel and Finn, Chelsea and Gupta, Abhinav},
      booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)}, 
      title={Train Offline, Test Online: A Real Robot Learning Benchmark}, 
      year={2023},
     }""",
)
    

language_table (442226 trajs, 399.23 GiB)

rgb (360, 640, 3)
    tfds.core.DatasetInfo(
    name='language_table',
    full_name='language_table/0.0.1',
    description="""
    
    """,
    homepage='https://www.tensorflow.org/datasets/catalog/language_table',
    data_path='gs://gresearch/robotics/language_table/0.0.1',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=399.23 GiB,
    features=FeaturesDict({
        'episode_id': string,
        'steps': Dataset({
            'action': Tensor(shape=(2,), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'effector_target_translation': Tensor(shape=(2,), dtype=float32),
                'effector_translation': Tensor(shape=(2,), dtype=float32),
                'instruction': Tensor(shape=(512,), dtype=int32),
                'rgb': Image(shape=(360, 640, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""""",
)
    

columbia_cairlab_pusht_real (122 trajs, 2.80 GiB)

natural_language_instruction wrist_image (240, 320, 3) image (240, 320, 3)
The task requires pushing a T-shaped block (gray) to a fixed target (green) with a circular end-effector (blue). Both observation and control frequencies are 10Hz.
The task requires pushing a T-shaped block (gray) to a fixed target (green) with a circular end-effector (blue). Both observation and control frequencies are 10Hz.
The task requires pushing a T-shaped block (gray) to a fixed target (green) with a circular end-effector (blue). Both observation and control frequencies are 10Hz.
    tfds.core.DatasetInfo(
    name='columbia_cairlab_pusht_real',
    full_name='columbia_cairlab_pusht_real/0.1.0',
    description="""
    UR5 planar pushing tasks
    """,
    homepage='https://github.com/columbia-ai-robotics/diffusion_policy',
    data_path='gs://gresearch/robotics/columbia_cairlab_pusht_real/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=2.80 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'gripper_closedness_action': float32,
                'rotation_delta': Tensor(shape=(3,), dtype=float32),
                'terminate_episode': float32,
                'world_vector': Tensor(shape=(3,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'image': Image(shape=(240, 320, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'robot_state': Tensor(shape=(2,), dtype=float32),
                'wrist_image': Image(shape=(240, 320, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'test': ,
        'train': ,
    },
    citation="""@inproceedings{chi2023diffusionpolicy,
    	title={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
    	author={Chi, Cheng and Feng, Siyuan and Du, Yilun and Xu, Zhenjia and Cousineau, Eric and Burchfiel, Benjamin and Song, Shuran},
    	booktitle={Proceedings of Robotics: Science and Systems (RSS)},
    	year={2023}
    }""",
)
    

stanford_kuka_multimodal_dataset_converted_externally_to_rlds (3000 trajs, 31.98 GiB)

image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='stanford_kuka_multimodal_dataset_converted_externally_to_rlds',
    full_name='stanford_kuka_multimodal_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    Kuka iiwa peg insertion with force feedback
    """,
    homepage='https://sites.google.com/view/visionandtouch',
    data_path='gs://gresearch/robotics/stanford_kuka_multimodal_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=31.98 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
        }),
        'steps': Dataset({
            'action': Tensor(shape=(4,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'contact': Tensor(shape=(50,), dtype=float32),
                'depth_image': Tensor(shape=(128, 128, 1), dtype=float32),
                'ee_forces_continuous': Tensor(shape=(50, 6), dtype=float32),
                'ee_orientation': Tensor(shape=(4,), dtype=float32),
                'ee_orientation_vel': Tensor(shape=(3,), dtype=float32),
                'ee_position': Tensor(shape=(3,), dtype=float32),
                'ee_vel': Tensor(shape=(3,), dtype=float32),
                'ee_yaw': Tensor(shape=(4,), dtype=float32),
                'ee_yaw_delta': Tensor(shape=(4,), dtype=float32),
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'joint_pos': Tensor(shape=(7,), dtype=float32),
                'joint_vel': Tensor(shape=(7,), dtype=float32),
                'optical_flow': Tensor(shape=(128, 128, 2), dtype=float32),
                'state': Tensor(shape=(8,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{lee2019icra,
      title={Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks},
      author={Lee, Michelle A and Zhu, Yuke and Srinivasan, Krishnan and Shah, Parth and Savarese, Silvio and Fei-Fei, Li and  Garg, Animesh and Bohg, Jeannette},
      booktitle={2019 IEEE International Conference on Robotics and Automation (ICRA)},
      year={2019},
      url={https://arxiv.org/abs/1810.10191}
    }""",
)
    

nyu_rot_dataset_converted_externally_to_rlds (14 trajs, 5.33 MiB)

image (84, 84, 3)
    tfds.core.DatasetInfo(
    name='nyu_rot_dataset_converted_externally_to_rlds',
    full_name='nyu_rot_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    xArm short-horizon table-top tasks
    """,
    homepage='https://rot-robot.github.io/',
    data_path='gs://gresearch/robotics/nyu_rot_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=5.33 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(84, 84, 3), dtype=uint8),
                'state': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{haldar2023watch,
      title={Watch and match: Supercharging imitation with regularized optimal transport},
      author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
      booktitle={Conference on Robot Learning},
      pages={32--43},
      year={2023},
      organization={PMLR}
    }""",
)
    

stanford_hydra_dataset_converted_externally_to_rlds (570 trajs, 72.48 GiB)

image (240, 320, 3) wrist_image (240, 320, 3)
    tfds.core.DatasetInfo(
    name='stanford_hydra_dataset_converted_externally_to_rlds',
    full_name='stanford_hydra_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    Franka solving long-horizon tasks
    """,
    homepage='https://sites.google.com/view/hydra-il-2023',
    data_path='gs://gresearch/robotics/stanford_hydra_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=72.48 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_dense': Scalar(shape=(), dtype=bool),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(240, 320, 3), dtype=uint8),
                'state': Tensor(shape=(27,), dtype=float32),
                'wrist_image': Image(shape=(240, 320, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{belkhale2023hydra,
     title={HYDRA: Hybrid Robot Actions for Imitation Learning},
     author={Belkhale, Suneel and Cui, Yuchen and Sadigh, Dorsa},
     journal={arxiv},
     year={2023}
    }""",
)
    

austin_buds_dataset_converted_externally_to_rlds (50 trajs, 1.49 GiB)

image (128, 128, 3) wrist_image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='austin_buds_dataset_converted_externally_to_rlds',
    full_name='austin_buds_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    Franka stylized kitchen tasks
    """,
    homepage='https://ut-austin-rpl.github.io/rpl-BUDS/',
    data_path='gs://gresearch/robotics/austin_buds_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=1.49 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'state': Tensor(shape=(24,), dtype=float32),
                'wrist_image': Image(shape=(128, 128, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{zhu2022bottom,
      title={Bottom-Up Skill Discovery From Unsegmented Demonstrations for Long-Horizon Robot Manipulation},
      author={Zhu, Yifeng and Stone, Peter and Zhu, Yuke},
      journal={IEEE Robotics and Automation Letters},
      volume={7},
      number={2},
      pages={4126--4133},
      year={2022},
      publisher={IEEE}
    }""",
)
    

nyu_franka_play_dataset_converted_externally_to_rlds (365 trajs, 5.18 GiB)

image_additional_view (128, 128, 3) image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='nyu_franka_play_dataset_converted_externally_to_rlds',
    full_name='nyu_franka_play_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    Franka interacting with toy kitchens
    """,
    homepage='https://play-to-policy.github.io/',
    data_path='gs://gresearch/robotics/nyu_franka_play_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=5.18 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(15,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'depth': Tensor(shape=(128, 128, 1), dtype=int32),
                'depth_additional_view': Tensor(shape=(128, 128, 1), dtype=int32),
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'image_additional_view': Image(shape=(128, 128, 3), dtype=uint8),
                'state': Tensor(shape=(13,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
        'val': ,
    },
    citation="""@article{cui2022play,
      title   = {From Play to Policy: Conditional Behavior Generation from Uncurated Robot Data},
      author  = {Cui, Zichen Jeff and Wang, Yibin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
      journal = {arXiv preprint arXiv:2210.10047},
      year    = {2022}
    }""",
)
    

maniskill_dataset_converted_externally_to_rlds (30213 trajs, 151.05 GiB)

wrist_image (256, 256, 3) image (256, 256, 3)
    tfds.core.DatasetInfo(
    name='maniskill_dataset_converted_externally_to_rlds',
    full_name='maniskill_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    Simulated Franka performing various manipulation tasks
    """,
    homepage='https://github.com/haosulab/ManiSkill2',
    data_path='gs://gresearch/robotics/maniskill_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=151.05 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'episode_id': Text(shape=(), dtype=string),
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'base_pose': Tensor(shape=(7,), dtype=float32),
                'depth': Image(shape=(256, 256, 1), dtype=uint16),
                'image': Image(shape=(256, 256, 3), dtype=uint8),
                'main_camera_cam2world_gl': Tensor(shape=(4, 4), dtype=float32),
                'main_camera_extrinsic_cv': Tensor(shape=(4, 4), dtype=float32),
                'main_camera_intrinsic_cv': Tensor(shape=(3, 3), dtype=float32),
                'state': Tensor(shape=(18,), dtype=float32),
                'target_object_or_part_final_pose': Tensor(shape=(7,), dtype=float32),
                'target_object_or_part_final_pose_valid': Tensor(shape=(7,), dtype=uint8),
                'target_object_or_part_initial_pose': Tensor(shape=(7,), dtype=float32),
                'target_object_or_part_initial_pose_valid': Tensor(shape=(7,), dtype=uint8),
                'tcp_pose': Tensor(shape=(7,), dtype=float32),
                'wrist_camera_cam2world_gl': Tensor(shape=(4, 4), dtype=float32),
                'wrist_camera_extrinsic_cv': Tensor(shape=(4, 4), dtype=float32),
                'wrist_camera_intrinsic_cv': Tensor(shape=(3, 3), dtype=float32),
                'wrist_depth': Image(shape=(256, 256, 1), dtype=uint16),
                'wrist_image': Image(shape=(256, 256, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{gu2023maniskill2,
      title={ManiSkill2: A Unified Benchmark for Generalizable Manipulation Skills},
      author={Gu, Jiayuan and Xiang, Fanbo and Li, Xuanlin and Ling, Zhan and Liu, Xiqiang and Mu, Tongzhou and Tang, Yihe and Tao, Stone and Wei, Xinyue and Yao, Yunchao and Yuan, Xiaodi and Xie, Pengwei and Huang, Zhiao and Chen, Rui and Su, Hao},
      booktitle={International Conference on Learning Representations},
      year={2023}
    }""",
)
    

cmu_franka_exploration_dataset_converted_externally_to_rlds (199 trajs, 602.24 MiB)

highres_image (480, 640, 3) image (64, 64, 3)
    tfds.core.DatasetInfo(
    name='cmu_franka_exploration_dataset_converted_externally_to_rlds',
    full_name='cmu_franka_exploration_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    Franka exploring toy kitchens
    """,
    homepage='https://human-world-model.github.io/',
    data_path='gs://gresearch/robotics/cmu_franka_exploration_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=602.24 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'highres_image': Image(shape=(480, 640, 3), dtype=uint8),
                'image': Image(shape=(64, 64, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
            'structured_action': Tensor(shape=(8,), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{mendonca2023structured,
                  title={Structured World Models from Human Videos},
                  author={Mendonca, Russell  and Bahl, Shikhar and Pathak, Deepak},
                  journal={RSS},
                  year={2023}
                }""",
)
    

ucsd_kitchen_dataset_converted_externally_to_rlds (150 trajs, 1.33 GiB)

image (480, 640, 3)
    tfds.core.DatasetInfo(
    name='ucsd_kitchen_dataset_converted_externally_to_rlds',
    full_name='ucsd_kitchen_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    xArm interacting with different toy kitchens
    """,
    homepage=' ',
    data_path='gs://gresearch/robotics/ucsd_kitchen_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=1.33 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(480, 640, 3), dtype=uint8),
                'state': Tensor(shape=(21,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@ARTICLE{ucsd_kitchens,
      author = {Ge Yan, Kris Wu, and Xiaolong Wang},
      title = {{ucsd kitchens Dataset}},
      year = {2023},
      month = {August}
    }""",
)
    

ucsd_pick_and_place_dataset_converted_externally_to_rlds (1355 trajs, 3.53 GiB)

image (224, 224, 3)
    tfds.core.DatasetInfo(
    name='ucsd_pick_and_place_dataset_converted_externally_to_rlds',
    full_name='ucsd_pick_and_place_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    xArm picking and placing objects with distractors
    """,
    homepage='https://owmcorl.github.io',
    data_path='gs://gresearch/robotics/ucsd_pick_and_place_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=3.53 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'disclaimer': Text(shape=(), dtype=string),
            'file_path': Text(shape=(), dtype=string),
            'n_transitions': Scalar(shape=(), dtype=int32),
            'success': Scalar(shape=(), dtype=bool),
            'success_labeled_by': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(4,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(224, 224, 3), dtype=uint8),
                'state': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@preprint{Feng2023Finetuning,
    	title={Finetuning Offline World Models in the Real World},
    	author={Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, Xiaolong Wang},
    	year={2023}
    }""",
)
    

austin_sailor_dataset_converted_externally_to_rlds (240 trajs, 18.85 GiB)

wrist_image (128, 128, 3) image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='austin_sailor_dataset_converted_externally_to_rlds',
    full_name='austin_sailor_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    Franka tablesetting tasks
    """,
    homepage='https://ut-austin-rpl.github.io/sailor/',
    data_path='gs://gresearch/robotics/austin_sailor_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=18.85 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'state': Tensor(shape=(8,), dtype=float32),
                'state_ee': Tensor(shape=(16,), dtype=float32),
                'state_gripper': Tensor(shape=(1,), dtype=float32),
                'state_joint': Tensor(shape=(7,), dtype=float32),
                'wrist_image': Image(shape=(128, 128, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{nasiriany2022sailor,
          title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
          author={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},
          booktitle={Conference on Robot Learning (CoRL)},
          year={2022}
        }""",
)
    

austin_sirius_dataset_converted_externally_to_rlds (559 trajs, 6.55 GiB)

wrist_image (84, 84, 3) image (84, 84, 3)
    tfds.core.DatasetInfo(
    name='austin_sirius_dataset_converted_externally_to_rlds',
    full_name='austin_sirius_dataset_converted_externally_to_rlds/0.1.0',
    description="""
    Franka tabletop manipulation tasks
    """,
    homepage='https://ut-austin-rpl.github.io/sirius/',
    data_path='gs://gresearch/robotics/austin_sirius_dataset_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=6.55 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'action_mode': Tensor(shape=(1,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'intv_label': Tensor(shape=(1,), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(84, 84, 3), dtype=uint8),
                'state': Tensor(shape=(8,), dtype=float32),
                'state_ee': Tensor(shape=(16,), dtype=float32),
                'state_gripper': Tensor(shape=(1,), dtype=float32),
                'state_joint': Tensor(shape=(7,), dtype=float32),
                'wrist_image': Image(shape=(84, 84, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{liu2022robot,
        title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},
        author = {Huihan Liu and Soroush Nasiriany and Lance Zhang and Zhiyao Bao and Yuke Zhu},
        booktitle = {Robotics: Science and Systems (RSS)},
        year = {2023}
    }""",
)
    

bc_z (39350 trajs, 80.54 GiB)

natural_language_instruction image (171, 213, 3)
place the white sponge in the ceramic bowl
place the eraser on the white sponge
move the arm in a circular motion
    tfds.core.DatasetInfo(
    name='bc_z',
    full_name='bc_z/0.1.0',
    description="""
    Teleoped Google robot doing mostly pick-place from a table
    """,
    homepage='https://www.kaggle.com/datasets/google/bc-z-robot/discussion/309201',
    data_path='gs://gresearch/robotics/bc_z/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=80.54 GiB,
    features=FeaturesDict({
        'steps': Dataset({
            'action': FeaturesDict({
                'future/axis_angle_residual': Tensor(shape=(30,), dtype=float32),
                'future/target_close': Tensor(shape=(10,), dtype=int64),
                'future/xyz_residual': Tensor(shape=(30,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'observation': FeaturesDict({
                'episode_success': float32,
                'image': Image(shape=(171, 213, 3), dtype=uint8),
                'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
                'natural_language_instruction': string,
                'present/autonomous': int64,
                'present/axis_angle': Tensor(shape=(3,), dtype=float32),
                'present/intervention': int64,
                'present/sensed_close': Tensor(shape=(1,), dtype=float32),
                'present/xyz': Tensor(shape=(3,), dtype=float32),
                'sequence_length': int64,
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
        'val': ,
    },
    citation="""@inproceedings{jang2021bc,
    title={{BC}-Z: Zero-Shot Task Generalization with Robotic Imitation Learning},
    author={Eric Jang and Alex Irpan and Mohi Khansari and Daniel Kappler and Frederik Ebert and Corey Lynch and Sergey Levine and Chelsea Finn},
    booktitle={5th Annual Conference on Robot Learning},
    year={2021},
    url={https://openreview.net/forum?id=8kbp23tSGYv}}""",
)
    

usc_cloth_sim_converted_externally_to_rlds (800 trajs, 254.52 MiB)

image (32, 32, 3)
    tfds.core.DatasetInfo(
    name='usc_cloth_sim_converted_externally_to_rlds',
    full_name='usc_cloth_sim_converted_externally_to_rlds/0.1.0',
    description="""
    Franka cloth interaction tasks
    """,
    homepage='https://uscresl.github.io/dmfd/',
    data_path='gs://gresearch/robotics/usc_cloth_sim_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=254.52 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(4,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(32, 32, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
        'val': ,
    },
    citation="""@article{salhotra2022dmfd,
        author={Salhotra, Gautam and Liu, I-Chun Arthur and Dominguez-Kuhne, Marcus and Sukhatme, Gaurav S.},
        journal={IEEE Robotics and Automation Letters},
        title={Learning Deformable Object Manipulation From Expert Demonstrations},
        year={2022},
        volume={7},
        number={4},
        pages={8775-8782},
        doi={10.1109/LRA.2022.3187843}
    }""",
)
    

utokyo_pr2_opening_fridge_converted_externally_to_rlds (64 trajs, 360.57 MiB)

image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='utokyo_pr2_opening_fridge_converted_externally_to_rlds',
    full_name='utokyo_pr2_opening_fridge_converted_externally_to_rlds/0.1.0',
    description="""
    PR2 opening fridge doors
    """,
    homepage='--',
    data_path='gs://gresearch/robotics/utokyo_pr2_opening_fridge_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=360.57 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'state': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
        'val': ,
    },
    citation="""@misc{oh2023pr2utokyodatasets,
      author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
      title={X-Embodiment U-Tokyo PR2 Datasets},
      year={2023},
      url={https://github.com/ojh6404/rlds_dataset_builder},
    }""",
)
    

utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds (192 trajs, 829.37 MiB)

image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds',
    full_name='utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds/0.1.0',
    description="""
    tbd
    """,
    homepage='tbd',
    data_path='gs://gresearch/robotics/utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=829.37 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'state': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
        'val': ,
    },
    citation="""tbd""",
)
    

utokyo_saytap_converted_externally_to_rlds (20 trajs, 55.34 MiB)

wrist_image (64, 64, 3) image (64, 64, 3)
    tfds.core.DatasetInfo(
    name='utokyo_saytap_converted_externally_to_rlds',
    full_name='utokyo_saytap_converted_externally_to_rlds/0.1.0',
    description="""
    A1 walking, no RGB
    """,
    homepage='https://saytap.github.io/',
    data_path='gs://gresearch/robotics/utokyo_saytap_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=55.34 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(12,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'desired_pattern': Tensor(shape=(4, 5), dtype=bool),
                'desired_vel': Tensor(shape=(3,), dtype=float32),
                'image': Image(shape=(64, 64, 3), dtype=uint8),
                'prev_act': Tensor(shape=(12,), dtype=float32),
                'proj_grav_vec': Tensor(shape=(3,), dtype=float32),
                'state': Tensor(shape=(30,), dtype=float32),
                'wrist_image': Image(shape=(64, 64, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{saytap2023,
      author = {Yujin Tang and Wenhao Yu and Jie Tan and Heiga Zen and Aleksandra Faust and
    Tatsuya Harada},
      title  = {SayTap: Language to Quadrupedal Locomotion},
      eprint = {arXiv:2306.07580},
      url    = {https://saytap.github.io},
      note   = "{https://saytap.github.io}",
      year   = {2023}
    }""",
)
    

utokyo_xarm_pick_and_place_converted_externally_to_rlds (92 trajs, 1.29 GiB)

image (224, 224, 3) hand_image (224, 224, 3) image2 (224, 224, 3)
    tfds.core.DatasetInfo(
    name='utokyo_xarm_pick_and_place_converted_externally_to_rlds',
    full_name='utokyo_xarm_pick_and_place_converted_externally_to_rlds/0.1.0',
    description="""
    xArm picking and placing objects
    """,
    homepage='--',
    data_path='gs://gresearch/robotics/utokyo_xarm_pick_and_place_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=1.29 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'end_effector_pose': Tensor(shape=(6,), dtype=float32),
                'hand_image': Image(shape=(224, 224, 3), dtype=uint8),
                'image': Image(shape=(224, 224, 3), dtype=uint8),
                'image2': Image(shape=(224, 224, 3), dtype=uint8),
                'joint_state': Tensor(shape=(14,), dtype=float32),
                'joint_trajectory': Tensor(shape=(21,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
        'val': ,
    },
    citation="""@misc{matsushima2023weblab,
      title={Weblab xArm Dataset},
      author={Tatsuya Matsushima and Hiroki Furuta and Yusuke Iwasawa and Yutaka Matsuo},
      year={2023},
    }""",
)
    

utokyo_xarm_bimanual_converted_externally_to_rlds (64 trajs, 138.44 MiB)

image (256, 256, 3)
    tfds.core.DatasetInfo(
    name='utokyo_xarm_bimanual_converted_externally_to_rlds',
    full_name='utokyo_xarm_bimanual_converted_externally_to_rlds/0.1.0',
    description="""
    xArm bimanual setup folding towel
    """,
    homepage='--',
    data_path='gs://gresearch/robotics/utokyo_xarm_bimanual_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=138.44 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(14,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'action_l': Tensor(shape=(7,), dtype=float32),
                'action_r': Tensor(shape=(7,), dtype=float32),
                'image': Image(shape=(256, 256, 3), dtype=uint8),
                'pose_l': Tensor(shape=(6,), dtype=float32),
                'pose_r': Tensor(shape=(6,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
        'val': ,
    },
    citation="""@misc{matsushima2023weblab,
      title={Weblab xArm Dataset},
      author={Tatsuya Matsushima and Hiroki Furuta and Yusuke Iwasawa and Yutaka Matsuo},
      year={2023},
    }""",
)
    

robo_net (82775 trajs, 799.91 GiB)

image2 (240, 320, 3) image (240, 320, 3) image1 (240, 320, 3)
    tfds.core.DatasetInfo(
    name='robo_net',
    full_name='robo_net/1.0.0',
    description="""
    This is an excerpt of the [RoboNet](https://github.com/SudeepDasari/RoboNet) dataset.
    
    
    Data from 5 robots randomly interacting with a bin using the AutoGrasp primitive. The action/state space is shared across all robots, and camera observations were taken using 3 synced camera images.
    """,
    homepage='https://www.tensorflow.org/datasets/catalog/robo_net',
    data_path='gs://gresearch/robotics/robo_net/1.0.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=799.91 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
            'robot': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(5,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': Scalar(shape=(), dtype=bool),
            'is_last': Scalar(shape=(), dtype=bool),
            'is_terminal': Scalar(shape=(), dtype=bool),
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(240, 320, 3), dtype=uint8),
                'image1': Image(shape=(240, 320, 3), dtype=uint8),
                'image2': Image(shape=(240, 320, 3), dtype=uint8),
                'state': Tensor(shape=(5,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{dasari2019robonet,
        title={RoboNet: Large-Scale Multi-Robot Learning},
        author={Sudeep Dasari and Frederik Ebert and Stephen Tian and Suraj Nair and Bernadette Bucher and Karl Schmeckpeper and Siddharth Singh and Sergey Levine and Chelsea Finn},
        year={2019},
        eprint={1910.11215},
        archivePrefix={arXiv},
        primaryClass={cs.RO},
        booktitle={CoRL 2019: Volume 100 Proceedings of Machine Learning Research}
    }""",
)
    

berkeley_mvp_converted_externally_to_rlds (480 trajs, 12.34 GiB)

hand_image (480, 640, 3)
    tfds.core.DatasetInfo(
    name='berkeley_mvp_converted_externally_to_rlds',
    full_name='berkeley_mvp_converted_externally_to_rlds/0.1.0',
    description="""
    xArm performing 6 manipulation tasks
    """,
    homepage='https://arxiv.org/abs/2203.06173',
    data_path='gs://gresearch/robotics/berkeley_mvp_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=12.34 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'gripper': Scalar(shape=(), dtype=bool),
                'hand_image': Image(shape=(480, 640, 3), dtype=uint8),
                'joint_pos': Tensor(shape=(7,), dtype=float32),
                'pose': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@InProceedings{Radosavovic2022,
      title = {Real-World Robot Learning with Masked Visual Pre-training},
      author = {Ilija Radosavovic and Tete Xiao and Stephen James and Pieter Abbeel and Jitendra Malik and Trevor Darrell},
      booktitle = {CoRL},
      year = {2022}
    }""",
)
    

berkeley_rpt_converted_externally_to_rlds (908 trajs, 40.64 GiB)

hand_image (480, 640, 3)
    tfds.core.DatasetInfo(
    name='berkeley_rpt_converted_externally_to_rlds',
    full_name='berkeley_rpt_converted_externally_to_rlds/0.1.0',
    description="""
    Franka performing tabletop pick place tasks
    """,
    homepage='https://arxiv.org/abs/2306.10007',
    data_path='gs://gresearch/robotics/berkeley_rpt_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=40.64 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'gripper': Scalar(shape=(), dtype=bool),
                'hand_image': Image(shape=(480, 640, 3), dtype=uint8),
                'joint_pos': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{Radosavovic2023,
      title={Robot Learning with Sensorimotor Pre-training},
      author={Ilija Radosavovic and Baifeng Shi and Letian Fu and Ken Goldberg and Trevor Darrell and Jitendra Malik},
      year={2023},
      journal={arXiv:2306.10007}
    }""",
)
    

kaist_nonprehensile_converted_externally_to_rlds (201 trajs, 11.71 GiB)

image (480, 640, 3)
    tfds.core.DatasetInfo(
    name='kaist_nonprehensile_converted_externally_to_rlds',
    full_name='kaist_nonprehensile_converted_externally_to_rlds/0.1.0',
    description="""
    Franka manipulating ungraspable objects
    """,
    homepage='--',
    data_path='gs://gresearch/robotics/kaist_nonprehensile_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=11.71 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(20,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(480, 640, 3), dtype=uint8),
                'partial_pointcloud': Tensor(shape=(512, 3), dtype=float32),
                'state': Tensor(shape=(21,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{kimpre,
      title={Pre-and post-contact policy decomposition for non-prehensile manipulation with zero-shot sim-to-real transfer},
      author={Kim, Minchan and Han, Junhyek and Kim, Jaehyung and Kim, Beomjoon},
      booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
      year={2023},
      organization={IEEE}
    }""",
)
    

stanford_mask_vit_converted_externally_to_rlds (9109 trajs, 76.17 GiB)

image (480, 480, 3)
    tfds.core.DatasetInfo(
    name='stanford_mask_vit_converted_externally_to_rlds',
    full_name='stanford_mask_vit_converted_externally_to_rlds/0.1.0',
    description="""
    Sawyer pushing and picking objects in a bin
    """,
    homepage='https://arxiv.org/abs/2206.11894',
    data_path='gs://gresearch/robotics/stanford_mask_vit_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=76.17 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(5,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'end_effector_pose': Tensor(shape=(5,), dtype=float32),
                'finger_sensors': Tensor(shape=(1,), dtype=float32),
                'high_bound': Tensor(shape=(5,), dtype=float32),
                'image': Image(shape=(480, 480, 3), dtype=uint8),
                'low_bound': Tensor(shape=(5,), dtype=float32),
                'state': Tensor(shape=(15,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
        'val': ,
    },
    citation="""@inproceedings{gupta2022maskvit,
      title={MaskViT: Masked Visual Pre-Training for Video Prediction},
      author={Agrim Gupta and Stephen Tian and Yunzhi Zhang and Jiajun Wu and Roberto Martín-Martín and Li Fei-Fei},
      booktitle={International Conference on Learning Representations},
      year={2022}
    }""",
)
    

tokyo_u_lsmo_converted_externally_to_rlds (50 trajs, 335.71 MiB)

image (120, 120, 3)
    tfds.core.DatasetInfo(
    name='tokyo_u_lsmo_converted_externally_to_rlds',
    full_name='tokyo_u_lsmo_converted_externally_to_rlds/0.1.0',
    description="""
    motion planning trajectory of pick place tasks
    """,
    homepage='https://journals.sagepub.com/doi/full/10.1177/02783649211044405',
    data_path='gs://gresearch/robotics/tokyo_u_lsmo_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=335.71 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(120, 120, 3), dtype=uint8),
                'state': Tensor(shape=(13,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@Article{Osa22,
      author  = {Takayuki Osa},
      journal = {The International Journal of Robotics Research},
      title   = {Motion Planning by Learning the Solution Manifold in Trajectory Optimization},
      year    = {2022},
      number  = {3},
      pages   = {291--311},
      volume  = {41},
    }""",
)
    

dlr_sara_pour_converted_externally_to_rlds (100 trajs, 2.92 GiB)

image (480, 640, 3)
    tfds.core.DatasetInfo(
    name='dlr_sara_pour_converted_externally_to_rlds',
    full_name='dlr_sara_pour_converted_externally_to_rlds/0.1.0',
    description="""
    pouring liquid from a bottle into a mug
    """,
    homepage='https://elib.dlr.de/193739/1/padalkar2023rlsct.pdf',
    data_path='gs://gresearch/robotics/dlr_sara_pour_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=2.92 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(480, 640, 3), dtype=uint8),
                'state': Tensor(shape=(6,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{padalkar2023guiding,
      title={Guiding Reinforcement Learning with Shared Control Templates},
      author={Padalkar, Abhishek and Quere, Gabriel and Steinmetz, Franz and Raffin, Antonin and Nieuwenhuisen, Matthias and Silv{'e}rio, Jo{\~a}o and Stulp, Freek},
      booktitle={40th IEEE International Conference on Robotics and Automation, ICRA 2023},
      year={2023},
      organization={IEEE}
    }""",
)
    

dlr_sara_grid_clamp_converted_externally_to_rlds (107 trajs, 1.65 GiB)

image (480, 640, 3)
    tfds.core.DatasetInfo(
    name='dlr_sara_grid_clamp_converted_externally_to_rlds',
    full_name='dlr_sara_grid_clamp_converted_externally_to_rlds/0.1.0',
    description="""
    place grid clamp onto grids on table
    """,
    homepage='https://www.researchsquare.com/article/rs-3289569/v1',
    data_path='gs://gresearch/robotics/dlr_sara_grid_clamp_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=1.65 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(480, 640, 3), dtype=uint8),
                'state': Tensor(shape=(12,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{padalkar2023guided,
      title={A guided reinforcement learning approach using shared control templates for learning manipulation skills in the real world},
      author={Padalkar, Abhishek and Quere, Gabriel and Raffin, Antonin and Silv{'e}rio, Jo{\~a}o and Stulp, Freek},
      journal={Research square preprint rs-3289569/v1},
      year={2023}
    }""",
)
    

dlr_edan_shared_control_converted_externally_to_rlds (104 trajs, 3.09 GiB)

image (360, 640, 3)
    tfds.core.DatasetInfo(
    name='dlr_edan_shared_control_converted_externally_to_rlds',
    full_name='dlr_edan_shared_control_converted_externally_to_rlds/0.1.0',
    description="""
    wheelchair with arm performing shelf pick tasks
    """,
    homepage='https://ieeexplore.ieee.org/document/9341156',
    data_path='gs://gresearch/robotics/dlr_edan_shared_control_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=3.09 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(360, 640, 3), dtype=uint8),
                'state': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{vogel_edan_2020,
    	title = {EDAN - an EMG-Controlled Daily Assistant to Help People with Physical Disabilities},
    	language = {en},
    	booktitle = {2020 {IEEE}/{RSJ} {International} {Conference} on {Intelligent} {Robots} and {Systems} ({IROS})},
    	author = {Vogel, Jörn and Hagengruber, Annette and Iskandar, Maged and Quere, Gabriel and Leipscher, Ulrike and Bustamante, Samuel and Dietrich, Alexander and Hoeppner, Hannes and Leidner, Daniel and Albu-Schäffer, Alin},
    	year = {2020}
    }
    @inproceedings{quere_shared_2020,
    	address = {Paris, France},
    	title = {Shared {Control} {Templates} for {Assistive} {Robotics}},
    	language = {en},
    	booktitle = {2020 {IEEE} {International} {Conference} on {Robotics} and {Automation} ({ICRA})},
    	author = {Quere, Gabriel and Hagengruber, Annette and Iskandar, Maged and Bustamante, Samuel and Leidner, Daniel and Stulp, Freek and Vogel, Joern},
    	year = {2020},
    	pages = {7},
    }""",
)
    

asu_table_top_converted_externally_to_rlds (110 trajs, 737.60 MiB)

image (224, 224, 3)
    tfds.core.DatasetInfo(
    name='asu_table_top_converted_externally_to_rlds',
    full_name='asu_table_top_converted_externally_to_rlds/0.1.0',
    description="""
    UR5 performing table-top pick/place/rotate tasks
    """,
    homepage='https://link.springer.com/article/10.1007/s10514-023-10129-1',
    data_path='gs://gresearch/robotics/asu_table_top_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=737.60 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'action_delta': Tensor(shape=(7,), dtype=float32),
            'action_inst': Text(shape=(), dtype=string),
            'discount': Scalar(shape=(), dtype=float32),
            'goal_object': Text(shape=(), dtype=string),
            'ground_truth_states': FeaturesDict({
                'EE': Tensor(shape=(6,), dtype=float32),
                'bottle': Tensor(shape=(6,), dtype=float32),
                'bread': Tensor(shape=(6,), dtype=float32),
                'coke': Tensor(shape=(6,), dtype=float32),
                'cube': Tensor(shape=(6,), dtype=float32),
                'milk': Tensor(shape=(6,), dtype=float32),
                'pepsi': Tensor(shape=(6,), dtype=float32),
            }),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(224, 224, 3), dtype=uint8),
                'state': Tensor(shape=(7,), dtype=float32),
                'state_vel': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{zhou2023modularity,
      title={Modularity through Attention: Efficient Training and Transfer of Language-Conditioned Policies for Robot Manipulation},
      author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Stepputtis, Simon and Amor, Heni},
      booktitle={Conference on Robot Learning},
      pages={1684--1695},
      year={2023},
      organization={PMLR}
    }
    @article{zhou2023learning,
      title={Learning modular language-conditioned robot policies through attention},
      author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Ben Amor, Heni and Stepputtis, Simon},
      journal={Autonomous Robots},
      pages={1--21},
      year={2023},
      publisher={Springer}
    }""",
)
    

stanford_robocook_converted_externally_to_rlds (2460 trajs, 124.62 GiB)

image_3 (256, 256, 3) image_2 (256, 256, 3) image_4 (256, 256, 3) image_1 (256, 256, 3)
    tfds.core.DatasetInfo(
    name='stanford_robocook_converted_externally_to_rlds',
    full_name='stanford_robocook_converted_externally_to_rlds/0.1.0',
    description="""
    Franka preparing dumplings with various tools
    """,
    homepage='https://hshi74.github.io/robocook/',
    data_path='gs://gresearch/robotics/stanford_robocook_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=124.62 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'extrinsics_1': Tensor(shape=(4, 4), dtype=float32),
            'extrinsics_2': Tensor(shape=(4, 4), dtype=float32),
            'extrinsics_3': Tensor(shape=(4, 4), dtype=float32),
            'extrinsics_4': Tensor(shape=(4, 4), dtype=float32),
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'depth_1': Tensor(shape=(256, 256), dtype=float32),
                'depth_2': Tensor(shape=(256, 256), dtype=float32),
                'depth_3': Tensor(shape=(256, 256), dtype=float32),
                'depth_4': Tensor(shape=(256, 256), dtype=float32),
                'image_1': Image(shape=(256, 256, 3), dtype=uint8),
                'image_2': Image(shape=(256, 256, 3), dtype=uint8),
                'image_3': Image(shape=(256, 256, 3), dtype=uint8),
                'image_4': Image(shape=(256, 256, 3), dtype=uint8),
                'state': Tensor(shape=(7,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{shi2023robocook,
      title={RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools},
      author={Shi, Haochen and Xu, Huazhe and Clarke, Samuel and Li, Yunzhu and Wu, Jiajun},
      journal={arXiv preprint arXiv:2306.14447},
      year={2023}
    }""",
)
    

eth_agent_affordances (118 trajs, 17.27 GiB)

image (64, 64, 3)
    tfds.core.DatasetInfo(
    name='eth_agent_affordances',
    full_name='eth_agent_affordances/0.1.0',
    description="""
    Franka opening ovens -- point cloud + proprio only
    """,
    homepage='https://ieeexplore.ieee.org/iel7/10160211/10160212/10160747.pdf',
    data_path='gs://gresearch/robotics/eth_agent_affordances/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=17.27 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
            'input_point_cloud': Tensor(shape=(10000, 3), dtype=float16),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(6,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(64, 64, 3), dtype=uint8),
                'input_point_cloud': Tensor(shape=(10000, 3), dtype=float16),
                'state': Tensor(shape=(8,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{schiavi2023learning,
      title={Learning agent-aware affordances for closed-loop interaction with articulated objects},
      author={Schiavi, Giulio and Wulkop, Paula and Rizzi, Giuseppe and Ott, Lionel and Siegwart, Roland and Chung, Jen Jen},
      booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
      pages={5916--5922},
      year={2023},
      organization={IEEE}
    }""",
)
    

imperialcollege_sawyer_wrist_cam (170 trajs, 81.87 MiB)

wrist_image (64, 64, 3) image (64, 64, 3)
    tfds.core.DatasetInfo(
    name='imperialcollege_sawyer_wrist_cam',
    full_name='imperialcollege_sawyer_wrist_cam/0.1.0',
    description="""
    Sawyer performing table top manipulation
    """,
    homepage='--',
    data_path='gs://gresearch/robotics/imperialcollege_sawyer_wrist_cam/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=81.87 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(64, 64, 3), dtype=uint8),
                'state': Tensor(shape=(1,), dtype=float32),
                'wrist_image': Image(shape=(64, 64, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""--""",
)
    

iamlab_cmu_pickup_insert_converted_externally_to_rlds (631 trajs, 50.29 GiB)

image (360, 640, 3) wrist_image (240, 320, 3)
    tfds.core.DatasetInfo(
    name='iamlab_cmu_pickup_insert_converted_externally_to_rlds',
    full_name='iamlab_cmu_pickup_insert_converted_externally_to_rlds/0.1.0',
    description="""
    Franka picking objects and insertion tasks
    """,
    homepage='https://openreview.net/forum?id=WuBv9-IGDUA',
    data_path='gs://gresearch/robotics/iamlab_cmu_pickup_insert_converted_externally_to_rlds/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=50.29 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(360, 640, 3), dtype=uint8),
                'state': Tensor(shape=(20,), dtype=float32),
                'wrist_image': Image(shape=(240, 320, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{
    saxena2023multiresolution,
    title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
    author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
    booktitle={7th Annual Conference on Robot Learning},
    year={2023},
    url={https://openreview.net/forum?id=WuBv9-IGDUA}
    }""",
)
    

uiuc_d3field (192 trajs, 15.82 GiB)

image_1 (360, 640, 3) image_3 (360, 640, 3) image_2 (360, 640, 3) image_4 (360, 640, 3)
    tfds.core.DatasetInfo(
    name='uiuc_d3field',
    full_name='uiuc_d3field/0.1.0',
    description="""
    Organizing office desk, utensils etc
    """,
    homepage='https://robopil.github.io/d3fields/',
    data_path='gs://gresearch/robotics/uiuc_d3field/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=15.82 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(3,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'depth_1': Image(shape=(360, 640, 1), dtype=uint16),
                'depth_2': Image(shape=(360, 640, 1), dtype=uint16),
                'depth_3': Image(shape=(360, 640, 1), dtype=uint16),
                'depth_4': Image(shape=(360, 640, 1), dtype=uint16),
                'image_1': Image(shape=(360, 640, 3), dtype=uint8),
                'image_2': Image(shape=(360, 640, 3), dtype=uint8),
                'image_3': Image(shape=(360, 640, 3), dtype=uint8),
                'image_4': Image(shape=(360, 640, 3), dtype=uint8),
                'state': Tensor(shape=(4, 4), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{wang2023d3field,
      title={D^3Field: Dynamic 3D Descriptor Fields for Generalizable Robotic Manipulation}, 
      author={Wang, Yixuan and Li, Zhuoran and Zhang, Mingtong and Driggs-Campbell, Katherine and Wu, Jiajun and Fei-Fei, Li and Li, Yunzhu},
      journal={arXiv preprint arXiv:},
      year={2023},
    }""",
)
    

utaustin_mutex (1500 trajs, 20.79 GiB)

image (128, 128, 3) wrist_image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='utaustin_mutex',
    full_name='utaustin_mutex/0.1.0',
    description="""
    Diverse household manipulation tasks
    """,
    homepage='https://ut-austin-rpl.github.io/MUTEX/',
    data_path='gs://gresearch/robotics/utaustin_mutex/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=20.79 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(7,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'state': Tensor(shape=(24,), dtype=float32),
                'wrist_image': Image(shape=(128, 128, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{
        shah2023mutex,
        title={{MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
        author={Rutav Shah and Roberto Mart{'\i}n-Mart{'\i}n and Yuke Zhu},
        booktitle={7th Annual Conference on Robot Learning},
        year={2023},
        url={https://openreview.net/forum?id=PwqiqaaEzJ}
    }""",
)
    

berkeley_fanuc_manipulation (415 trajs, 8.85 GiB)

wrist_image (224, 224, 3) image (224, 224, 3)
    tfds.core.DatasetInfo(
    name='berkeley_fanuc_manipulation',
    full_name='berkeley_fanuc_manipulation/0.1.0',
    description="""
    Fanuc robot performing various manipulation tasks
    """,
    homepage='https://sites.google.com/berkeley.edu/fanuc-manipulation',
    data_path='gs://gresearch/robotics/berkeley_fanuc_manipulation/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=8.85 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(6,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'end_effector_state': Tensor(shape=(7,), dtype=float32),
                'image': Image(shape=(224, 224, 3), dtype=uint8),
                'state': Tensor(shape=(13,), dtype=float32),
                'wrist_image': Image(shape=(224, 224, 3), dtype=uint8),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{fanuc_manipulation2023,
      title={Fanuc Manipulation: A Dataset for Learning-based Manipulation with FANUC Mate 200iD Robot},
      author={Zhu, Xinghao and Tian, Ran and Xu, Chenfeng and Ding, Mingyu and Zhan, Wei and Tomizuka, Masayoshi},
      year={2023},
    }""",
)
    

cmu_play_fusion (576 trajs, 6.68 GiB)

image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='cmu_play_fusion',
    full_name='cmu_play_fusion/0.1.0',
    description="""
    The robot plays with 3 complex scenes: a grill with many cooking objects like toaster, pan, etc. It has to pick, open, place, close. It  has to set a table, move plates, cups, utensils. And it has to place dishes in the sink, dishwasher, hand cups etc.
    """,
    homepage='https://play-fusion.github.io/',
    data_path='gs://gresearch/robotics/cmu_play_fusion/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=6.68 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(9,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'state': Tensor(shape=(8,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{chen2023playfusion,
      title={PlayFusion: Skill Acquisition via Diffusion from Language-Annotated Play},
      author={Chen, Lili and Bahl, Shikhar and Pathak, Deepak},
      booktitle={CoRL},
      year={2023}
    }""",
)
    

cmu_stretch (135 trajs, 728.06 MiB)

image (128, 128, 3)
    tfds.core.DatasetInfo(
    name='cmu_stretch',
    full_name='cmu_stretch/0.1.0',
    description="""
    Hello stretch robot kitchen interactions
    """,
    homepage='https://robo-affordances.github.io/',
    data_path='gs://gresearch/robotics/cmu_stretch/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=728.06 MiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(8,), dtype=float32),
            'discount': Scalar(shape=(), dtype=float32),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(128, 128, 3), dtype=uint8),
                'state': Tensor(shape=(4,), dtype=float32),
            }),
            'reward': Scalar(shape=(), dtype=float32),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{bahl2023affordances,
      title={Affordances from Human Videos as a Versatile Representation for Robotics},
      author={Bahl, Shikhar and Mendonca, Russell and Chen, Lili and Jain, Unnat and Pathak, Deepak},
      booktitle={CVPR},
      year={2023}
    }
    @article{mendonca2023structured,
      title={Structured World Models from Human Videos},
      author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
      journal={CoRL},
      year={2023}
    }""",
)
    

berkeley_gnm_recon (11834 trajs, 18.73 GiB)

image (120, 160, 3)
    tfds.core.DatasetInfo(
    name='berkeley_gnm_recon',
    full_name='berkeley_gnm_recon/0.1.0',
    description="""
    off-road navigation
    """,
    homepage='https://sites.google.com/view/recon-robot',
    data_path='gs://gresearch/robotics/berkeley_gnm_recon/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=18.73 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(2,), dtype=float64),
            'action_angle': Tensor(shape=(3,), dtype=float64),
            'discount': Scalar(shape=(), dtype=float64),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(120, 160, 3), dtype=uint8),
                'position': Tensor(shape=(2,), dtype=float64),
                'state': Tensor(shape=(3,), dtype=float64),
                'yaw': Tensor(shape=(1,), dtype=float64),
            }),
            'reward': Scalar(shape=(), dtype=float64),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{
    shah2021rapid,
    title={{Rapid Exploration for Open-World Navigation with Latent Goal Models}},
    author={Dhruv Shah and Benjamin Eysenbach and Nicholas Rhinehart and Sergey Levine},
    booktitle={5th Annual Conference on Robot Learning },
    year={2021},
    url={https://openreview.net/forum?id=d_SWJhyKfVw}
    }""",
)
    

berkeley_gnm_cory_hall (7331 trajs, 1.39 GiB)

image (64, 85, 3)
    tfds.core.DatasetInfo(
    name='berkeley_gnm_cory_hall',
    full_name='berkeley_gnm_cory_hall/0.1.0',
    description="""
    hallway navigation
    """,
    homepage='https://arxiv.org/abs/1709.10489',
    data_path='gs://gresearch/robotics/berkeley_gnm_cory_hall/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=1.39 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(2,), dtype=float64),
            'action_angle': Tensor(shape=(3,), dtype=float64),
            'discount': Scalar(shape=(), dtype=float64),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(64, 85, 3), dtype=uint8),
                'position': Tensor(shape=(2,), dtype=float64),
                'state': Tensor(shape=(3,), dtype=float64),
                'yaw': Tensor(shape=(1,), dtype=float64),
            }),
            'reward': Scalar(shape=(), dtype=float64),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@inproceedings{kahn2018self,
      title={Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation},
      author={Kahn, Gregory and Villaflor, Adam and Ding, Bosen and Abbeel, Pieter and Levine, Sergey},
      booktitle={2018 IEEE international conference on robotics and automation (ICRA)},
      pages={5129--5136},
      year={2018},
      organization={IEEE}
    }""",
)
    

berkeley_gnm_sac_son (2955 trajs, 7.00 GiB)

image (120, 160, 3)
    tfds.core.DatasetInfo(
    name='berkeley_gnm_sac_son',
    full_name='berkeley_gnm_sac_son/0.1.0',
    description="""
    office navigation
    """,
    homepage='https://sites.google.com/view/SACSoN-review',
    data_path='gs://gresearch/robotics/berkeley_gnm_sac_son/0.1.0',
    file_format=tfrecord,
    download_size=Unknown size,
    dataset_size=7.00 GiB,
    features=FeaturesDict({
        'episode_metadata': FeaturesDict({
            'file_path': Text(shape=(), dtype=string),
        }),
        'steps': Dataset({
            'action': Tensor(shape=(2,), dtype=float64),
            'action_angle': Tensor(shape=(3,), dtype=float64),
            'discount': Scalar(shape=(), dtype=float64),
            'is_first': bool,
            'is_last': bool,
            'is_terminal': bool,
            'language_embedding': Tensor(shape=(512,), dtype=float32),
            'language_instruction': Text(shape=(), dtype=string),
            'observation': FeaturesDict({
                'image': Image(shape=(120, 160, 3), dtype=uint8),
                'position': Tensor(shape=(2,), dtype=float64),
                'state': Tensor(shape=(3,), dtype=float64),
                'yaw': Tensor(shape=(1,), dtype=float64),
            }),
            'reward': Scalar(shape=(), dtype=float64),
        }),
    }),
    supervised_keys=None,
    disable_shuffling=False,
    splits={
        'train': ,
    },
    citation="""@article{hirose2023sacson,
      title={SACSoN: Scalable Autonomous Data Collection for Social Navigation},
      author={Hirose, Noriaki and Shah, Dhruv and Sridhar, Ajay and Levine, Sergey},
      journal={arXiv preprint arXiv:2306.01874},
      year={2023}
    }""",
)